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ABSTRACT 

One of the key elements influencing crop production across the globe is abiotic stress. Early detection and corrective 

action in this regard can help to lessen the effects of stresses on crop growth and output. Recent advances in remote 

sensing hold a vital role in the early identification of abiotic stress across a broader area with less involvement of 

money, time, and labour. Remote sensing technology has become an indispensable tool in the field of agriculture, 

particularly for detecting abiotic stress in plants. This paper reviews the application of remote sensing techniques for 

the assessment of abiotic stress factors such as drought, flood, salinity, and nutrient deficiency. Furthermore, the 

review explores the critical aspects of data acquisition, processing, and analysis, underscoring the importance of 

machine learning and artificial intelligence techniques in enhancing the accuracy of stress detection. 

Keywords: abiotic stress, remote sensing techniques, stress detection. 

 

INTRODUCTION 

Many environmental elements have an ongoing impact 

on plants. These include biotic and abiotic stresses. 

Abiotic stress factors included extreme temperatures 

(heat, cold, and freezing), too-high or too-low 

irradiation, water logging, drought, inadequate mineral 

nutrients in the soil, and excessive soil salinity. Biotic 

environmental factors are other organisms like 

symbionts, parasites, pathogens, herbivores, and 

competitors; and wind, ionizing radiation, or pollutants 

(Schulze et al. 2002). Abiotic stress is defined as any 

departure from these ideal external circumstances, 

meaning that there is an excess or variation in the 

chemical or physical environment that negatively 

impacts plant growth, development, and productivity 

(Bray et al. 2000). Each abiotic factor's number or 

intensity determines how it affects the plant. The plant 

needs a specific amount of each abiotic environmental 

element for optimum growth.  

The earth's climate is changing quickly, according to the 

most recent scientific research. Due to global warming, 

the already poor situation will soon get significantly 

worse as desertification continues to rise and the annual 

loss of arable land might treble by the end of the century. 

(Evans 2005; Vinocur and Altman 2005). The main 

abiotic stresses—high salt, heat, cold, and drought—

have a 70% negative impact on the survival, biomass 

production, and yields of key food crops. (Vorasoot et al. 

2003). 

In the contemporary global landscape, plant stress 

detection is regarded as one of the most important topics 

for improving crop productivity. With this wide-ranging 

view, there are numerous options for technology. 

Qualitative techniques like fluorescence, thermography, 

and VIS/NIR reflectance offer a non-disruptive picture 

of how stresses are affecting plants, even over vast 

regions. The effects of stress can be seen at different 

spatial scales, ranging from the DNA level (nanometers) 

to the cell (micrometres), the entire plant (millimeters to 

meters), and the field (kilometers). Only qualitative 

methods can be used to greater scales. (Galieni et al., 

2021). 

As one of the large data sources, remote sensing uses 

platforms from satellites, manned and unmanned 

aircraft, and ground-based structures to provide earth-

observation data and analytical findings regularly. The 

advancement of satellite remote sensing technology in 

particular has allowed for the availability of vast 

amounts of remotely sensed data for study and other 

uses. (Liu 2015; Chi et al. 2016).  

Currently, there are over a thousand operational satellites 

orbiting the planet, many of which are used for remote 

sensing. Typically, these satellites' sensors continuously 

take pictures of the earth's surface at various temporal 

and spatial resolutions. (Rosenqvist et al. 2003; 

Anonymous 2015). 
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Remote Sensing:  

Remote sensing can be defined as learning something 

about an object without touching it. The field of remote 

sensing can be divided into two general categories: 

analog remote sensing and digital remote sensing. 

Analog remote sensing included use of film to record the 

electromagnetic energy. Digital remote sensing included 

use of some type of sensor to convert the electromagnetic 

energy into numbers that can be recorded as bits and 

bytes on a computer and then displayed on a monitor. 

Modern tiny satellites, which revolutionized the satellite 

paradigm in the late 1980s, created new opportunities for 

space applications. 

From 1957 to 1969, the first microsatellites were 

launched. A total of 238 mini-satellites and 249 micro-

satellites were launched between 1980 and 1999 from 

various countries across the world, such as China, India, 

Germany, Japan, Korea, Saudi Arabia, China, Algeria, 

and Malaysia. In 1999, a special issue on tiny satellite 

engineering was released. (Swinerd 1999). The 

International Workshop on Earth Observation Small 

Satellites for Remote Sensing Applications took place in 

Kuala Lumpur, Malaysia from November 13–16, 2007. 

Based on Dr. Kramer's presentation at that Workshop 

(Kramer 2007), Kramer and Cracknell (2008) have 

produced an overview of tiny satellites in remote 

sensing. 

Steps involved in remote sensing included: 

Digital Image Analysis: It is the process by which the 

selected imagery is converted/processed into 

information in the form of a thematic map. Digital image 

analysis is performed through a series of steps. These 

steps include (1) image acquisition/selection, (2) pre-

processing including image enhancement, (3) 

classification, (4) post-processing, and (5) accuracy 

assessment. 

Image Acquisition/Selection: The application of the 

study and the budget come first when choosing or 

purchasing suitable remotely sensed imagery. 

Pre-processing: Pre-processing is defined as any 

technique performed on the image before the 

classification. 

Classification: Only spectral information (tone/color) 

used to classify digital data. 

Post-processing: Post-processing can be defined as 

those techniques applied to the imagery after it has been 

through the classification process. 

Change Detection: Images can be used to simply 

identify binary “change versus no-change” or “from-to 

change” 

Accuracy Assessment: Accuracy assessment is a vital 

step in any digital remote sensing project. (Congalton, R. 

G. 2010). 

Remote Sensing in Precision Agriculture:  

Since its establishment in the 1980s, precision 

agriculture has transformed agricultural operations by 

integrating remote sensing, geographic information 

systems (GIS), and global positioning systems (GPS). 

This approach was based on agricultural mechanization. 

Precision agriculture has changed over the last three 

decades from strategic monitoring based on satellite 

imaging for local decision-making to tactical monitoring 

and control guided by data from low-altitude remotely 

sensed data for site-specific treatment at the field level 

(Zhang et al. 2002). 

Broad-band multispectral or narrow-band hyperspectral 

data capture, both imaging and non-imaging, is the 

primary use of sensors. To accommodate sensors aboard 

manned and unmanned aircraft, space-borne platforms 

are utilized, whereas ground-based platforms are best 

suited for laboratory and field sensors that need to be 

deployed quickly. Agricultural remote sensing is an 

extremely specialized subject that produces extremely 

complicated and large volumes of pictures and spectral 

data to inform agricultural development decisions. To 

enhance decision-making regarding fertilization, 

irrigation, and pest management for crop production, 

remote sensing is used in agricultural areas to monitor 

crop stress and soil parameters. Early plant stress 

detection offers the chance to make early management 

changes to enhance crop output and quality. (Kim et al., 

2010). 

Remote Sensing Qualitative Methods for Abiotic 

Stress Detection: 

A healthy leaf emits fluorescence when stimulated by 

UV radiation. The wavelengths of radiation are blue (440 

nm), green (520 nm), red (690 nm), and far-red (740 nm). 

The electromagnetic signal that is reflected by the plant 

leaves during reflectance-based remote sensing is used 

to record the data. Changes in leaf components are the 

parameters tracked in reflectance-based remote sensing 

for plant stress. (Chaerle et al. 2002). 

Firstly, plants and electromagnetic radiation interact, 

which is the basis of most of the processes involved. 

Plants can undergo a wide range of intricate 

physiological and biochemical reactions to stressful 

situations, including changes in stomatal conductance, 

pigment content, and biochemistry. In the previous few 

decades, agricultural sciences primarily relied on 

reflectance (in the thermal (in the thermal infrared, TIR, 

7.0–20.0 μm region), fluorescence (at 0.68 and 0.74 μm 

wavelengths), and near-infrared (NIR, 0.7–1.3 μm and 

short wave-infrared, SWIR, 1.3–2.5 μm) sensors. 

Additionally, sensors can be categorized according to 

how they are used in (i) non-imaging techniques (such as 

VIS, multispectral and hyperspectral imaging, thermal 

imaging, fluorescence imaging, and x-ray imaging) and 

(ii) imaging techniques (such as VIS, multispectral and 

hyperspectral imaging, and fluorescence imaging). Since 

non-imaging sensors do not give spatial information, 

they are generally better suited for measurements made 

at lab or leaf scales. The great resolution of the sensors 

that are currently on the market aids in identifying 

potential relationships between minute processes 

occurring at the tissue level and plant electromagnetic 

patterns after exposure to stress. (Thomas et al., 

2017, 2018).  The spatial resolution is a crucial 

component in gathering data on plant responses to stress 
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at the canopy or landscape levels. For instance, proximal 

hyperspectral imaging is more effective than 

hyperspectral remote sensing in the field of 

characterizing a particular disease. (Kuska and Mahlein, 

2018). Every sensing approach has a unique level of 

efficacy in identifying and detecting stress, which varies 

depending on the level of technical advancement 

attained and the inherent features of the technology being 

used. It depends on (i) the kind of stressful conditions 

and (ii) its magnitude early identification of stressful 

conditions is important In the event of water stress, for 

instance, temperature-based indices offer a suitable pre-

visual identification of plant reactions. (Gerhards et al., 

2019). 

Secondly, Plant genotype is connected to spectrum 

responses to stress exposure within the same sensing 

vegetation technology and stressful circumstances. To 

produce indicators or parameters for certain demands, 

this element could require a thorough investigation of 

particular stress-genotype combinations together with an 

understanding of the physiological and biochemical 

mechanisms that lead to changes in the spectrum feature. 

Thirdly, data collection procedures should take into 

account the plant canopy and leaf structural architecture, 

as well as the measuring environment. Enhancements are 

required for (i) pre-processing data, (ii) integrating 

calibrating systems on automated systems, and (iii) 

utilizing multiple sensors. platforms with 3-D shape 

sensors installed as well. (Mishra et al., 2020). 

Fourthly, the identification of specific stressors can be 

challenging, particularly in open-field conditions where 

a multi-stress scenario can occur, because certain plant 

responses which may be detectable for stress diagnosis 

may be shared among various stresses (e.g., drought, 

salinity, temperatures, mineral toxicity, or pathogen 

infection). Single-sensing techniques have the potential 

to identify individual stress signals with high specificity 

in experimental settings. However, a comprehensive and 

integrated approach is necessary to identify potential 

multiple causes in agricultural applications (Jones and 

Schofield, 2008). The aforementioned factors provide a 

fresh foundation for the development of vegetation 

sensing for stress detection by utilizing existing methods 

and introducing and enhancing cutting-edge imaging 

techniques that are useful for the agricultural industry. 

(Mishra et al., 2017; Khan et al., 2018; Gerhards et al., 

2019; Gorbe and Calatayud, 2012; Murchie and Lawson, 

2013). 

Fluorescence Spectroscopy: 

A specific wavelength of light is absorbed by fluorescent 

molecules, which then change their electronic shell and 

eventually return to their original state while releasing 

some of the absorbed energy as an electromagnetic 

wave. Every molecule has unique wavelengths for 

absorption and emission. For example, chlorophyll 

fluorescence (ChlF) has two peaks in the far-red (735 

nm) and red (680 nm) wavelength ranges of its natural 

emission, which fall between 650 and 800 nm. 

Variations in the chlorophyll content of leaves can be 

detected by variations in the shape of the fluorescence 

spectra and the ratio of the two maxima emission peaks 

(F685/F735). (Buschmann, 2007; Pandey et al., 

2015). Following plant exposure to both biotic and 

abiotic stressful circumstances, ChlF and ChlF 

parameters are commonly used to quickly assess any 

mutation of Photosystem II. 

Vis/NIR Spectroscopy: 

With both active and passive sensors, leaf and/or canopy 

reflectance has been extensively studied under a variety 

of biotic and abiotic stressful situations. While the latter 

rely on sunlight as their light source, the former are 

equipped with light-emitting components. Since 

reflectance in the VIS, NIR, and SWIR is predominantly 

controlled by photosynthetic pigments, cell structure, 

and water content, respectively, the principal 

applications in plant health detection are based on 

spectral wavelengths ranging from 400 to 2,500 nm. In 

reality, when plants develop in poor settings, these 

features can undergo significant alterations. (Mishra et 

al., 2017). 

Reflectance spectroscopy is generally utilized to sense a 

variety of stressful situations. The assessment of crops' 

nitrogen status is a topic covered in some of the more 

current work on this subject. (Stellacci et al., 2016), the 

effects of salinity on crop growth and yield (Boshkovski 

et al., 2020); the plant changes brought on by drought 

(Stagnari et al., 2014; Maimaitiyiming et al., 2017; 

Sylvain and Cecile, 2018); the accumulation of particular 

secondary metabolites in plant tissue (Couture et al., 

2016); and the phenotyping of plants (Garriga et al., 

2017; Ge et al., 2019), the macro- and micro-nutrient 

deficiencies (Galieni et al., 2015). These days, the 

majority of reflectance spectroscopy technologies are 

based on hyperspectral sensors, which allow for massive 

data collection by allowing images to be acquired in 

some tiny (<10 nm) and contiguous spectral bands. 

Thermal Imaging: 

Because of the strong correlations between foliar surface 

temperature (Tleaf) and leaf gas exchange (CO2 and 

H2O fluxes controlled by stomatal closure or aperture) 

or stomatal conductance (gs), it can be effectively used 

in the identification of stressed circumstances (Gutirrez 

et al., 2018). Well-known and extensively studied 

subjects include the physical rules governing body 

emission in the TIR region and the atmospheric and 

environmental factors influencing the Tleaf-gs 

connection. (Valu et al., 2013; Vialet-Chabrand and 

Lawson, 2019; Jones and Schofield, 2008). Its primary 

uses are in agriculture and phenotyping, specifically in 

the establishment of irrigation schedules and sensing for 

crop water stress detection (Gutirrez et al., 2018). 

Fluorescence Imaging 

The emergence of novel technologies has made it 

possible to construct an image by simultaneously 

accumulating a large number of punctual fluorescence 

spectroscopic signals, each of which is encoded with a 

color-value connection. Typically, the system consists of 

a charge-coupled device (CCD) camera and a UV light 
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source to excite the fluorescent molecules. (Sankaran et 

al., 2010). Moreover, fluorescence imaging is a helpful 

tool for examining stressful situations caused by nutrient 

deficiencies (Wang et al., 2018c), extreme temperatures 

(Dong et al., 2019; Lu and Lu, 2020), drought and/or 

salinity (Yao et al., 2018; Sun et al., 2019).  

Multi- and Hyperspectral Imaging and Thermal 

Hyperspectral Remote Sensing for Stress 

Characterization: 

The classification of spectral sensors is based on the 

resolution of the measure (i.e., the density of wavebands 

in the measure). Multi- and hyperspectral sensors can 

load data from a continuous and wider VIS/NIR band, 

usually between 400 and 1,000 nm, with the most 

sophisticated systems reaching the 350–2,500 nm band 

(Stellacci et al., 2016; Maes and Steppe, 2019). The 

spectral resolution of multispectral sensors is 

approximately 50 nm, whereas hyperspectral sensors 

have a resolution of 1 to 10 nm (Mahlein, 2016; Stellacci 

et al., 2016). Nevertheless, because they are more widely 

available and less expensive, multi-spectral sensors are 

currently beneficial only in agricultural applications. 

Because the spectrum information is combined with the 

spatial and temporal dimensions in the image-based 

VIS/NIR technique, it is possible to assess the 

occurrence of stressful situations even at the landscape 

scale (Zhang et al., 2019a). Real-time monitoring of the 

water state, biomass and yield, nutrient status, disease, 

and pests is facilitated by spaceborne, aerial, and ground-

based systems (Xue and Su, 2017; Maes and Steppe, 

2019; Zhang et al., 2019a; Caballero et al., 2020). 

Until recently vegetation spectra in the mid-and thermal-

infrared region (MIR: 2.5–6.0 μm and TIR: 8.0–14.0 

μm) have been considered featureless. Most spectral 

features of plant leaves in the TIR domain have been 

overlooked due to lack of equipment, poor signal-to-

noise ratio and the complex nature of the spectral 

characteristics of vegetation (Ribeiro da Luz and 

Crowley 2007). However, recent advances in TIR 

application led to the discovery that the spectral 

signatures of fresh plants are dominated by epidermal 

materials of leaves (i.e. cell wall and cuticle) (Salisbury, 

1986). The reflectance spectra of green leaves taken by 

high-resolution sensors in the TIR region revealed a 

broad range of distinctive spectral features (Salisbury 

1986; Salisbury and Milton 1988). The spectral response 

of fresh and completely dried leaves measured in the 

mid-to thermal-infrared region revealed significant 

variation in the mid-infrared spectral response, 

emphasizing the potential use of mid-infrared for leaf 

water content quantification (Gerber et al. 2011). 

Remotely sensed data using TIR radiation has been 

successfully used to detect water-deficit stress even 

before visual symptoms of the same appeared (Möller et 

al. 2006). Fresh leaves showed the lowest MIR and TIR 

reflectance, and with the decrease in leaf water content, 

reflectance increased. In the MIR, the variation in 

reflectance was more prominent between 2.5 and 3.0 μm 

(maximum reflectance of about 30%) and 3.5–5.8 μm 

(maximum reflectance of about 16%). The absorption 

characteristics at 3.05 μm and 4.65 μm are related to the 

leaf water content (Ribeiro da Luz 2006; Fabre et al. 

2011). Cheng et al. (2011) reported better retrieval of 

leaf water content retrieval from the MIR to TIR spectra 

(R2 ¼ 0.88) than that obtained from VNIR to SWIR 

spectra (R2 ¼ 0.77). The correlation between leaf water 

content and spectral response over the entire MIR region 

was reported to be negative (Ullah et al. 2013). 

Abiotic Stress Monitoring: 

Water-Deficit Stress Monitoring: 

A variety of approaches with differing degrees of 

precision and application have been tried, such as 

assessing the water content of soil or plants, the 

concentrations of pigments or nitrogen, dry matter, and 

the leaf area index (LAI) (Carter 1993; Peñuelas et al. 

1994). Scientists concluded sensors can accurately detect 

the water-deficit stress that is being applied. (Sinclair 

and Ludlow 1985). Leaf water content can effectively 

indicate the health and vigour of a plant along with its 

photosynthetic efficiency (Harry, 2006). The selection of 

suitable genotypes in breeding for water-deficit stress 

tolerance provides advanced prediction for monitoring 

the physiological status of any vegetation (Harry, 2006). 

Apart from these, precise estimates of plant water 

content can be used for drought risk assessment (Bauer 

et al. 1986). Plant water deficit stress or drought stress is 

one of the major limiting factors which affects yield and 

is usually detected only after it becomes visually 

apparent. So, an accurate estimation of plant water status 

or relative water content (RWC) is a major factor in the 

decision-making process regarding general land use, 

crop irrigation and drought assessment (Peñuelas et al. 

1997). RWC can be defined as the ratio of the volume of 

water present in a leaf to the water volume of the leaf at 

fully turgid conditions (Hunt and Rock 1989). 

Assessment of water-deficit stress can be done by taking 

plant canopy or leaf level reflectance measurements, as 

they show change in response to changing RWC of the 

plant (Gutierrez et al. 2010). Different species may 

exhibit different symptoms of water-deficit stress; 

however, one of the common effects of water-deficit 

stress across all the species is the change in plant’s 

spectral (Peñuelas et al. 1993). The water absorption 

bands can be of good use in the estimation of the plant’s 

RWC. 

The reflectance of plant leaf or canopy particularly 

beyond visible spectral range is mostly governed by leaf 

water content. Therefore, it can indirectly be used for 

non-destructive in-situ evaluation of plant water status. 

Canopy reflectance obtained from hyperspectral sensors 

besides offering quick and easy measurements enables 

the estimation of some additional parameters through a 

series of different spectral indices (e.g., chlorophyll 

content, LAI, intercepted radiation and photosynthetic 

capacity) (Araus et al. 2001). Of its versatile nature, 

canopy reflectance is a very useful tool for high-

throughput phenotyping (Montes et al. 2007; Chapman 

2008). 
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Effect of Stress on Plant’s Spectral Signature: 

Recognizing an object in isolation from its surroundings 

is remote sensing's main goal. It is referred to as 

spectrum reflectance if this is accomplished through 

reflectance measurements. In the wavelength range of 

400-2700 nm, the spectral reflectance of the vegetation 

varies with wavelength and can be split into three 

primary wide zones. (Gates et al. 1965). The response is 

dominated by the pigmentation of leaves, specifically 

chlorophyll, carotene, and xanthophylls, in the visible 

spectrum (400–700 nm). Low reflectance and high 

absorbance, particularly at blue and red wavelengths, 

define this region. (Gausman 1974). The NIR region has 

two weak water absorption features at wavelengths 950–

970 and 1150–1260, respectively (Sims and Gamon 

2002). There are three main water absorption bands are 

present at 1400 nm, 1900 nm, and 2700 nm. The 

response in the shortwave infrared (SWIR) spectrum 

(1300-2700 nm) is primarily influenced by the water 

content of the same leaves. The visible-near-infrared 

(VNIR) and SWIR spectra have been extensively 

explored for determining leaf water content (Ceccato et 

al. 2002; Cheng et al. 2011). Water molecules present in 

leaves weakly absorb radiation in the NIR (720–1000 

nm) region and strongly absorb in the SWIR (1400–1900 

nm) region (Datt 1999).  

 

 
Typical spectral reflectance pattern of leaf. Source: 

Jensen (2009). 

 

 
Source: Jensen (2009) 

Therefore, the SWIR zone is more accurate and sensitive 

than the NIR region for measuring leaf water content 

(Datt 1999). Numerous investigations found a significant 

relationship between leaf water content and reflectance 

and derivative spectra between 1400 and 1900 nm. 

(Ceccato et al. 2001, 2002; Champagne et al. 2003). If 

the chlorophyll content decreases as a result of biotic and 

abiotic stressors, the reflectance in the visible region 

increases. The reflectance in the NIR region of the 

electromagnetic spectrum will be reduced if disease or 

pests harm the leaves. 

Spectral Indices for Characterizing Stress: 

The vegetation indices (VIs), which highlight a certain 

aspect of the vegetation, are combinations of spectral 

responses in several wavebands. (Wiegand et al. 1991). 

Composite indices are more capable of detecting 

changes in a plant's biophysical and biochemical 

characteristics brought on by biotic and abiotic stressors 

than individual spectral bands (Asrar et al. 1984). The 

indexes also attempt to minimize the complexity of the 

multispectral/hyperspectral data and standardize the 

representation of crop spectral responses, which aids in 

comparing crops across regions. (Malingreau 1989). The 

NDWI was created to evaluate the condition of the water 

using airborne hyperspectral imaging with a 

considerably greater spatial resolution (Gao, 1996). 

NDWI is a reasonably accurate indicator of vegetation 

water content because it is less subject to atmospheric 

scattering caused by water vapours. It can also function 

using the 1640 nm and 2130 nm water absorption bands 

(Chen et al. 2005). According to Zarco-Tejada et al. 

(2003), the simple ratio water index (SRWI; 

R860/R1240) can be used to estimate plant water content 

concerning LAI, equivalent water thickness (EWT), and 

leaf biomass. The difference between the reflectance 

spectra of two spectral bands serves as the basis for the 

VIs, also known as simple ratio and normalized 

difference indices (Rouse et al. 1974). Spectral indices, 

such as WI or NDWI, use straightforward ratios of the 

reflectance at a wavelength within the water absorption 

bands and another wavelength from outside the water 

absorption bands, ideally used as a control, to identify 

changes in plant water content. (Sims and Gamon 2002).  

Indicators such as the red edge inflexion point (REIP) 

and the normalized differential vegetation index (NDVI) 

make use of wavelengths that are impacted by changes 

in the cellular makeup or pigment content of leaves. 

(Horler et al. 1983). The majority of the indices currently 

in use, such NDWI and WI, employ wavelengths in the 

near-infrared (NIR, 700-1300 nm) range. Even though 

numerous research has demonstrated the existence of 

meaningful connections between these indices and plant 

water status. (Peñuelas et al. 1997; Serrano et al. 2002; 

Pu et al. 2003; Asner and Martin 2008). It has been 

suggested that wavelengths in the SWIR rather than the 

NIR could more accurately depict changes in plant water 

status. (Tucker 1980). The SWIR wavebands located in 

the range of 1500–1750 nm have been identified as 
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useful for monitoring plant water content (Ceccato et al. 

2002; Chen et al. 2005; Eitel et al. 2006). 

Characterization of Stresses through Plant Pigment 

Assessment: 

Under stressful conditions, the amount of leaf 

chlorophyll drops, which reduces the amount of light that 

is absorbed overall in the visible spectrum (Zarco-Tejada 

et al., 2001). The usual spectral reflectance pattern of 

plants is altered as a result of these alterations, which 

results in a decrease in green reflection and an increase 

in red and blue reflections. The location and form of the 

spectral red edge are significant indications of plant 

water status when chlorophyll content is utilized as a 

measure of plant water-deficit stress (Horler et al. 1983). 

The (R850 R710)/(R850 R680) index was proposed by 

Datt (1999) utilizing the leaf reflectance of 21 

Eucalyptus species. Sims and Gamon (2002) created 

some indices using a sizable database that included over 

400 leaves and a variety of functional categories, leaf 

structures, and developmental stages. They then 

compared these indices to ones that were already in use. 

They discovered that when it came to connection with 

chlorophyll concentration, indices mSR705 and 

mND705 were far superior to others.  

 According to Gitelson and Merzlyak (1994), 

chlorophyll-a absorbs light at a wavelength of 670 nm 

with the highest sensitivity of reflectance. They 

concluded that the wavebands with the greatest 

sensitivity to chlorophyll-a levels were 550–560 nm and 

700–710 nm. For pigment estimation, Blackburn (1999) 

identified the optimal individual wavebands, e.g., 680, 

635 and 470 nm for chlorophyll-a, chlorophyll-b and 

carotenoids, respectively. Concentrations of both 

chlorophyll-a and chlorophyll-b in bracken (Pteridium 

aquilinum) were found to be best correlated with 676 nm 

(Blackburn 1998). Chlorophyll-a displayed the strongest 

connection with 680 nm wavelength at senescence in the 

same study. Gitelson and Merzlyak (1997) obtained an 

inaccuracy of less than 4.2 g cm2 while predicting leaf 

chemicals using an algorithm created from leaf optics 

and verified over nine species with a range of 0.27 to 

62.9 g cm2 of chlorophyll. 

Remote Sensing of Water Stress: 

Remote sensing offers a quick, affordable, non-

destructive, and spatio-temporal measure of a variety of 

physiological, biochemical, and structural crop 

parameters at various scales (ground, airborne, and 

satellite). Plants may experience permanent damage 

before observable signs of water stress arise. (Mahajan 

et al. 2005, Yardoanov et al. 2003, Jones et al. 2008). So, 

a pre-symptomatic or pre-visual identification of 

physiological changes in plants can essentially help to 

prevent serious crop damage. (Chaerle et al. 2000). With 

its continuous spectrum data, hyperspectral photography 

can provide more light on the connection between 

spectral traits and related plant states. (Pinter et al. 2003). 

Challenges and Future Perspectives: 

For the assessment and tracking of stress, imaging 

technologies have emerged as a crucial tool that helps 

physiologists, breeders, and agronomists with both in-

field and lab research. Stress can be seen on many 

different length scales, from the tiny cellular level to the 

macroscopic level in plants and fields. In agricultural 

applications, whole-field sensing is inherently appealing. 

Qualitative remote sensing technologies and techniques 

have the tremendous advantage of being able to detect 

quickly and provide indications on a wide range of 

scales, from the microscopic to the landscape. 

Furthermore, the use of robotic platforms makes it 

possible to continuously monitor vegetation. 

Owing to its great versatility, the most significant 

limitations, however, are associated with the accurate 

definition of protocols for measurements, processing, 

and pre-processing of data collected; these steps should 

account for the variability of environmental conditions 

that arise during measurements, as they have the 

potential to impair the accuracy and dependability of the 

results obtained. Improved decision-making about the 

application of water and other nutrients is possible for 

farmers through the combination of remote sensing and 

plant physiological investigations (Jones et al., 2004). 

 

CONCLUSION 

In summary, this review emphasizes an overview of the 

crucial role that remote sensing plays in the detection and 

management of abiotic stress in plants. Remote sensing 

is a significant quick, and affordable method for 

monitoring and managing abiotic stress in plants, 

ultimately promoting sustainable agriculture and food 

security. Remote sensing helps to establish sustainable 

agricultural practices and mitigate the problems 

associated with food security in a constantly changing 

climate by expanding our understanding of how plants 

react to environmental stressors. We covered the main 

abiotic stressors in this study, including salinity, drought, 

and nutrient deficiencies, as well as how multispectral 

and hyperspectral data can be used to detect stress-

induced responses, such as changes in leaf reflectance, 

chlorophyll content, and hydration status. To make it 

easier to identify areas of stressed plants, we investigated 

several indices and algorithms used to extract useful 

information from the collected picture. We also 

investigate accurate identification depending on 

understanding how abiotic stressors affect plants' 

spectral signatures.  

Remote sensing can be used to record and analyse 

changes in reflectance patterns, chlorophyll content, and 

water status as a result of stressors such as drought, salt, 

and nutrient deficiency. The ability to recognize these 

spectrum variations is a crucial component of stress 

detection. Physiological aspects are also included in it. 

Researchers and practitioners can better understand how 

plants respond to stress by fusing spectral data with 

physiological models. The assessment of the health of 

the plant, the degree of the stress, and the creation of 

specialized management techniques are all made 

possible by this method. 
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In conclusion, the interaction between remote sensing 

technology and physiological aspects of plant response 

to abiotic stresses holds great promise for improving our 

capacity to monitor and manage stressors, resulting in 

more sustainable agriculture, ecological management, 

and informed decision-making in a changing world. 
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